An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Significant climate impacts of aerosol changes driven by growth in energy use and advances in emission control technology

cover
Anthropogenic aerosols have increased significantly since the industrial revolution, driven largely by growth in emissions from energy use in sectors including power generation, industry, and transport. Advances in emission control technologies since around 1970, however, have partially counteracted emissions increases from the above sectors. Using the fully coupled Community Earth System Model, we quantify the effective radiative forcing (ERF) and climate response to 1970–2010 aerosol changes associated with the above two policy-relevant emission drivers. Emissions from energy-use growth generate a global mean aerosol ERF (mean ± 1 standard deviation) of −0.31 ± 0.22 W m−2 and result in a global mean cooling (−0.35 ± 0.17 K) and a precipitation reduction (−0.03 ± 0.02 mm d−1 ). By contrast, the avoided emissions from advances in emission control technology, which benefit air quality, generate a global mean ERF of +0.21 ± 0.23 W m−2 , a global warming of +0.10 ± 0.13 K, and global mean precipitation increase of +0.01 ± 0.02 mm d−1 . Despite the relatively small changes in global mean precipitation, these two emission drivers have profound impacts at regional scales, in particular over Asia and Europe. The total net aerosol impacts on climate are dominated by energy-use growth, from Asia in particular. However, technology advances outweigh energy-use growth over Europe and North America. Various non-linear processes are involved along the pathway from aerosol and their precursor emissions to radiative forcing and ultimately to climate responses, suggesting that the diagnosed aerosol forcing and effects must be interpreted in the context of experiment designs. Further, the temperature response per unit aerosol ERF varies significantly across many factors, including location and magnitude of emission changes, implying that ERF, and the related metrics, needs to be used very carefully for aerosols. Future aerosol-related emission pathways have large temporal and spatial uncertainties; our findings provide useful information for both assessing and interpreting such uncertainties, and they may help inform future climate change impact reduction strategies.
2019-12-03
COPERNICUS GESELLSCHAFT MBH
JRC117182
1680-7316 (online),   
https://www.atmos-chem-phys.net/19/14517/2019/,    https://publications.jrc.ec.europa.eu/repository/handle/JRC117182,   
10.5194/acp-19-14517-2019 (online),   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice