An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Testing Bias Adjustment Methods for Regional Climate Change Applications under Observational Uncertainty and Resolution Mismatch

cover
Systematic biases in climate models hamper their direct use in impact studies and, as a consequence, many statistical bias adjustment methods have been developed to calibrate model outputs against observations. The application of these methods in a climate change context is problematic since there is no clear understanding on how these methods may affect key magnitudes, for example, the climate change signal or trend, under different sources of uncertainty. Two relevant sources of uncertainty, often overlooked, are the sensitivity to the observational reference used to calibrate the method and the effect of the resolution mismatch between model and observations (downscaling effect). In the present work, we assess the impact of these factors on the climate change signal of temperature and precipitation considering marginal, temporal and extreme aspects. We use eight standard and state‐of‐the‐art bias adjustment methods (spanning a variety of methods regarding their nature—empirical or parametric—, fitted parameters and trend‐preservation) for a case study in the Iberian Peninsula. The quantile trend‐preserving methods (namely quantile delta mapping (QDM), scaled distribution mapping (SDM) and the method from the third phase of ISIMIP‐ISIMIP3) preserve better the raw signals for the different indices and variables considered (not all preserved by construction). However, they rely largely on the reference dataset used for calibration, thus presenting a larger sensitivity to the observations, especially for precipitation intensity, spells and extreme indices. Thus, high‐quality observational datasets are essential for comprehensive analyses in larger (continental) domains. Similar conclusions hold for experiments carried out at high (approximately 20 km) and low (approximately 120 km) spatial resolutions.
2020-09-08
WILEY
JRC119513
1530-261X (online),   
https://rmets.onlinelibrary.wiley.com/doi/full/10.1002/asl.978,    https://publications.jrc.ec.europa.eu/repository/handle/JRC119513,   
10.1002/asl.978 (online),   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice