Bridging tools to better understand environmental performances and raw materials supply of traction batteries in the future EU fleet
Sustainable and smart mobility and associated energy systems are key to decarbonize the EU and develop a clean, resource efficient, circular and carbon-neutral future. To achieve the 2030 and 2050 targets, technological and societal changes are needed. This transition will inevitably change the composition of the future EU fleet, with an increasing share of electric vehicles (xEVs). To assess the potential contribution of lithium-ion traction batteries (LIBs) in decreasing the environmental burdens of EU mobility, several aspects should be included. Despite environmental assessments of batteries along their life-cycle have been already conducted using Life-Cycle Assessment, a single tool unlikely provides a complete overview of such a complex system. Complementary information is provided by Material Flow Analysis and Criticality Assessment, with emphasis on supply risk. Bridging complementary aspects can better support decision-making, especially when different strategies are simultaneously tackled. Results pointed out that the future life-cycle GWP of traction LIBs will likely improve, mainly due to more environmental-friendly energy mix and improved recycling. Despite second-use will post-pone available materials for recycling, both these end-of-life strategies allow to keep the values of materials in the circular economy, with recycling also contributing to mitigate the supply risk of Lithium and Nickel.
BOBBA Silvia;
BIANCO Isabella;
EYNARD Umberto;
CARRARA Samuel;
MATHIEUX Fabrice;
BLENGINI Giovanni;
2020-08-31
MDPI
JRC120482
1996-1073 (online),
https://www.mdpi.com/1996-1073/13/10/2513,
https://publications.jrc.ec.europa.eu/repository/handle/JRC120482,
10.3390/en13102513 (online),
Additional supporting files
File name | Description | File type | |