Measurement of the 154Gd(n, γ) cross section and its astrophysical implications
The neutron capture cross section of 154Gd was measured from 1 eV to 300 keV in the experimental area located 185 m from the CERN n_TOF neutron spallation source, using a metallic sample of gadolinium, enriched to 67% in 154Gd. The capture measurement, performed with four C6D6 scintillation detectors, has been complemented by a transmission measurement performed at the GELINA time-of-flight facility (JRC-Geel), thus minimising the uncertainty related to sample composition. An accurate Maxwellian averaged capture cross section (MACS) was deduced over the temperature range of interest for s process nucleosynthesis modeling. We report a value of 880(50) mb for the MACS at kT = 30 keV, significantly lower compared to values available in literature. The new adopted 154Gd(n,γ) cross section reduces the discrepancy between observed and calculated solar s-only isotopic abundances predicted by s-process nucleosynthesis models.
MAZZONE A.;
CRISTALLO S.;
ABERLE O.;
ALAERTS Gery;
ALCAYNE V.;
AMADUCCI S;
ANDRZEJEWSKI J.;
AUDOUIN L.;
BABIANO-SUAREZ V.;
BACAK M.;
BARBAGALLO M;
BECARES V.;
BECVAR F.;
BELLIA G.;
BERTHOUMIEUX E.;
BILLOWES J.;
BOSNAR D.;
BROWN S;
BUSSO M.;
CAAMANO M.;
CABALLERO L.;
CALVIANI M.;
CALVIÑO F.;
CANO-OTT D.;
CASANOVAS A.;
CASTELLUCCIO D. M.;
CERUTTI F.;
CHEN Y. H.;
CHIAVERI E.;
CLAI G.;
COLONNA N.;
CORTÉS G. P.;
CORTES-GIRALDO M. A.;
COSENTINO Luigi;
DAMONE L.;
DIAKAKI M.;
DIETZ M.;
DOMINGO-PARDO C.;
DRESSLER R.;
DUPONT E.;
DURAN I.;
ELME Z.;
FERNÁNDEZ-DOMÍNGEZ B.;
FERRARI A.;
GONCALVES I. F.;
FINOCCHIARO Paolo;
FURMAN V.;
GARG R.;
GAWLIK A.;
GILARDONI S.;
GLODARIU T.;
GÖBEL K.;
GONZÁLEZ-ROMERO E.;
GUERRERO C.;
GUNSING F.;
HEINITZ S.;
HEYSE Jan;
JENKINS D. G.;
JERICHA E.;
KADI Y.;
KAPPELER F.;
KIMURA A.;
KIVEL N.;
KOKKORIS M.;
KOPATCH Y.;
KOPECKY Stefan;
KRTICKA M.;
KURTULGIL D.;
LADARESCU I.;
LEDERER-WOODS Claudia;
LERENDEGUI-MARCO J.;
LO MEO S.;
LONSDALE S.;
MACINA D.;
MANNA A;
MARTÍNEZ T.;
MASI A.;
MASSIMI C.;
MASTINU P.;
MASTROMARCO M.;
MATTEUCCI F.;
MAUGERI Emilio;
MENDOZA E.;
MENGONI A.;
MICHALOPOULOU V.;
MILAZZO P.M.;
MINGRONE F.;
MUCCIOLA Riccardo;
MUSUMARRA A.;
NEGRET A.;
NOLTE R.;
OGÁLLAR F.;
OPREA A.;
PATRONIS N.;
PAVLIK A.;
PERKOWSKI J.;
PIERSANTI L.;
PORRAS I.;
PRAENA J.;
QUESADA J.;
RADECK D.;
RAMOS DOVAL D.;
REIFARTH R.;
ROCHMAN D.;
RUBBIA C.;
SABATE-GILARTE M;
SAXENA A.;
SCHILLEBEECKX Peter;
SCHUMANN D.;
SMITH A. G.;
SOSNIN N. V.;
STAMATOPOULOS A.;
TAGLIENTE G.;
TAIN J.L.;
TALIP Z.;
TARIFENO-SALDIVIA A.;
TASSAN-GOT L.;
TORRES-SÁNCHEZ P.;
TSINGANIS A.;
ULRICH J.;
URLASS S.;
VALENTA S.;
VANNINI G.;
VARIALE V.;
VAZ P.;
VENTURA A.;
VESCOVI D.;
VLACHOUDIS V.;
VLASTOU R.;
WALLNER A.;
WOODS P. J.;
WYNANTS Ruud;
WRIGHT T. J.;
ZUGEC P.;
2020-08-26
ELSEVIER SCIENCE BV
JRC120825
0370-2693 (online),
https://publications.jrc.ec.europa.eu/repository/handle/JRC120825,
10.1016/j.physletb.2020.135405 (online),
Additional supporting files
File name | Description | File type | |