An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Reaction-diffusion spatial modeling of COVID-19: Greece and Andalusia as case examples

cover
We examine the spatial modeling of the outbreak of COVID-19 in two regions: the autonomous community of Andalusia in Spain and the mainland of Greece. We start with a zero-dimensional (0D; ordinary-differential-equation-level) compartmental epidemiological model consisting of Susceptible, Exposed, Asymptomatic, (symptomatically) Infected, Hospitalized, Recovered, and deceased populations (SEAIHR model). We emphasize the importance of the viral latent period (reflected in the exposed population) and the key role of an asymptomatic population. We optimize model parameters for both regions by comparing predictions to the cumulative number of infected and total number of deaths, the reported data we found to be most reliable, via minimizing the ℓ2 norm of the difference between predictions and observed data. We consider the sensitivity of model predictions on reasonable variations of model parameters and initial conditions, and we address issues of parameter identifiability. We model both the prequarantine and postquarantine evolution of the epidemic by a time-dependent change of the viral transmission rates that arises in response to containment measures. Subsequently, a spatially distributed version of the 0D model in the form of reaction-diffusion equations is developed. We consider that, after an initial localized seeding of the infection, its spread is governed by the diffusion (and 0D model “reactions”) of the asymptomatic and symptomatically infected populations, which decrease with the imposed restrictive measures. We inserted the maps of the two regions, and we imported population-density data into the finite-element software package COMSOL Multiphysics®, which was subsequently used to numerically solve the model partial differential equations. Upon discussing how to adapt the 0D model to this spatial setting, we show that these models bear significant potential towards capturing both the well-mixed, zero-dimensional description and the spatial expansion of the pandemic in the two regions. Veins of potential refinement of the model assumptions towards future work are also explored.
2021-08-24
AMER PHYSICAL SOC
JRC120934
2470-0045 (online),   
https://link.aps.org/doi/10.1103/PhysRevE.104.024412,    https://publications.jrc.ec.europa.eu/repository/handle/JRC120934,   
10.1103/PhysRevE.104.024412 (online),   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice