An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

316L(N) creep modelling with phenomenological approach and artificial intelligence based methods

cover
A model that describes creep behavior is essential in the design or life assessment of components and systems that operate at high temperatures. Using the RCC-MRx data and the LCSP (logistic creep strain prediction) model, processed design data were generated over the whole creep regime of 316L(N) steel—i.e., primary, secondary, and tertiary creep. The processed design data were used to develop three models with different approaches for the creep rate: a phenomenological approach; an artificial neural network; and an artificial intelligence method based on symbolic regression and genetic programming. It was shown that all three models are capable of describing the true creep rate as a function of true creep strain and true stress over a wide range of engineering stresses and temperatures without the need of additional micro-structural information. Furthermore, the results of finite element simulations reproduce the trends of experimental data from the literature.
2021-04-27
MDPI
JRC124075
2075-4701 (online),   
https://www.mdpi.com/2075-4701/11/5/698,    https://publications.jrc.ec.europa.eu/repository/handle/JRC124075,   
10.3390/met11050698 (online),   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice