Multiscale modelling for fusion and fission materials: the M4F project
The M4F project brings together the fusion and fission materials communities working on the prediction of radiation damage production and evolution and its effects on the mechanical behaviour of irradiated ferritic/martensitic (F/M) steels. It is a multidisciplinary project in which several different experimental and computational materials science tools are integrated to understand and model the complex phenomena associated with the formation and evolution of irradiation induced defects and their effects on the macroscopic behaviour of the target materials. In particular the project focuses on two specific aspects: (1) To develop physical understanding and predictive models of the origin of localised deformation under irradiation in F/M steels; (2) To develop best practices and advance towards the definition of protocols for the use of ion irradiation as a tool to evaluate radiation effects on materials. Nineteen modelling codes across different scales are being used and developed and an experimental validation programme based on the examination of materials irradiated with neutrons and ions is being carried out. The project enters now its 4th year and is close to delivering high-quality results, the exploitation of which will be evaluated and guided by an end-users group that involves fusion and fission reactor designers and materials experts. This paper overviews the work performed so far within the project, highlighting its impact for fission and fusion materials science.
MALERBA Lorenzo;
CATURLA M.J.;
GAGANIDZE Ermile;
KADEN C.;
KONSTANTINOVIĆ Milan;
OLSSON Per;
ROBERTSON Christian;
RODNEY David;
RUIZ MORENO Ana Maria;
SERRANO GARCIA Marta;
AKTAA Jarir;
ANENTO N.;
AUSTIN Timothy;
BAKAEV A;
BALBUENA J.P.;
BERGNER Frank;
BOIOLI F.;
BOLEININGER M.;
BONNY G.;
CASTIN N.;
CHAPMAN J.B.J.;
CHECKHONIN P.;
CLOZEL M.;
DEVINCRE B.;
DUPUY L.;
DE DIEGO Gonzalo;
DUDAREV S.L.;
FU C.-C.;
GATTI R.;
GÉLÉBART L.;
GÓMEZ-FERRER B.;
GONCALVES D.;
GUERRERO C.;
GUEYE P.M.;
HAEHNER Peter;
HANNULA Simo-Pekka;
HAYAT Q.;
HERNÁNDEZ-MAYORAL M.;
JAGIELSKI Jacek;
JENNETT N.;
JIMENEZ F.;
KAPOOR G.;
KRAYCH A.;
KHVAN Tymofii;
KURPASKA Lukasz;
KURONEN A.;
KVASHIN N.;
LIBERA Ondrej;
MA P.-W.;
MANNINEN Timo;
MARINICA M.-C.;
MERINO Susana;
MESLIN E.;
MOMPIOU F.;
MOTA F.;
NAMBURI Hygreeva Kiran;
ORTIZ C.J.;
PAREIGE Cristelle;
PRESTER M.;
RAJAKRISHNAN R.R.;
SAUZAY Maxime;
SERRA A.;
SIMONOVSKI Igor;
SOISSON F.;
SPATIG Philiipe;
TANGUY D.;
TERENTYEV D.;
TREBALA Michal;
TROCHET M.;
ULBRICHT Andreas;
VALLET M.;
VOGEL K.;
YALCINKAYA Tuncay;
ZHAO J.;
2021-12-10
ELSEVIER
JRC124289
2352-1791 (online),
https://www.sciencedirect.com/science/article/pii/S2352179121001216?via%3Dihub,
https://publications.jrc.ec.europa.eu/repository/handle/JRC124289,
10.1016/j.nme.2021.101051 (online),
Additional supporting files
| File name | Description | File type | |