An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Intrusion detection based on gray-level co-occurrence matrix and 2D Dispersion Entropy

cover
The Intrusion detection system (IDS) can be an important tool to mitigate cybersecurity threats in an Information and Communication Technology (ICT) infrastructure. The function of the IDS is to detect an intrusion to an ICT system or network so that adequate countermeasures can be adopted. Desirable features of IDS are computing efficiency and high intrusion detection accuracy. This paper proposes a new IDS algorithm of the type anomaly detection, where a machine learning algorithm is applied to detect deviations from legitimate traffic, which may indicate an intrusion. To improve computing efficiency, a sliding window approach is applied where the analysis is applied on large sequences of network flows statistics. This paper proposes a novel approach based on the transformation of the network flows statistics to gray images on which Gray level Co-occurrence Matrix (GLCM) are applied together with an entropy measure recently proposed in literature: 2D Dispersion Entropy. This approach is applied to the recently public IDS data set CIC-IDS2017. The results show that the proposed approach is competitive in comparison to other approaches proposed in literature on the same data set. The approach is applied to two attacks of the CIC-IDS2017 data set: DDoS and Port Scan achieving respectively an Error Rate of 0.0016 and 0.0048.
2021-07-26
MDPI
JRC125013
2076-3417 (online),   
https://www.mdpi.com/2076-3417/11/12/5567,    https://publications.jrc.ec.europa.eu/repository/handle/JRC125013,   
10.3390/app11125567 (online),   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice