An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Characterization of Cocoa Butters and Other Vegetable Fats by Pyrolysis-Mass-Spectrometry.

cover
Pyrolysis Mass Spectrometry (Py-MS) provides a fast way for the characterization of samples and does not require tedious sample preparation. However, the mass spectra obtained by this method are not interpretable bu itself and multivariate data analysis in the meaning of pattern analysis is required. Here Py-MS was used for the discrimination of cocoa butters from other vegetable fats. Mass spectra ranging from 50 to 250 amu were analysed by principal component analysis (PCA) and with neural nets. The supervised learning of neural nets leads to a good discrimination between the two classes. Detailed analysis of the nets revealed that only the first 60 masses were used within the net. The use of PCA, as an unsupervised pattern recognition technique, requires a careful selection of the number of masses included in the calcualtion. Canonical variance analysis was applied to determine the significant masses. Optimal performance of PCA was observed only using the first 22 significant masses. Most of these masses were different from the ones used by the neural net. It seems that the mass spectra obtained by Py-MS contain sufficient information for the discrimination of pure cocoa butter from other vegetable fats, but none of the methods seems to be able to extract all information available. Neural net provides a very robust method for this task and no prior data selection was necessary.
1996-09-09
JRC13788
https://publications.jrc.ec.europa.eu/repository/handle/JRC13788,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice