An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Specialization in Multi-Agent Systems through Learning.

cover
Specialization is a common feature in animal societies that leads to an improvement in the fitness of the team members and to an increase in the resources obtained by the team. In this paper we propose a simple reinforcement learning approach to specialization in an artificial multi-agent system. The system is made of homogeneous and non communicating agents. Because there is no communication, the number of agents in the team can easily scale up. Agents have the same initial functionalities but they learn to specialize and so cooperate to achieve a complex gathering task efficiently. Simulation experiments show how the multi-agent system specializes appropriately so as to reach optimal (or near-to-optimal) performance in unknown and changing environments
1997-03-17
JRC14519
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice