Title: Information Driven Evaluation of Data hiding Algorithms
Citation: Proceedings of the International Conference on Data Warehousing and Knowledge Discovery vol. LNCS 3589 p. 418-427
Publisher: Springer
Publication Year: 2005
JRC N°: JRC31003
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC31003
Type: Articles in periodicals and books
Abstract: Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. Due to the large amount of possible techniques that can be used to achieve this goal, it is necessary to provide some standard evaluation metrics to determine the best algorithms for a specific application or context. Currently, however, there is no common set of parameters that can be used for this purpose. This paper explores the problem of PPDM algorithm evaluation, starting from the key goal of preserving of data quality. To achieve such goal, we propose a formal definition of data quality specifically tailored for use in the context of PPDM algorithms, a set of evaluation parameters and an evaluation algorithm. The resulting evaluation core process is then presented as a part of a more general three step evaluation framework, taking also into account other aspects of the algorithm evaluation such as efficiency, scalability and level of privacy.
JRC Directorate:Space, Security and Migration

Files in This Item:
There are no files associated with this item.

Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.