An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Information Driven Evaluation of Data hiding Algorithms

cover
Privacy is one of the most important properties an information system must satisfy. A relatively new trend shows that classical access control techniques are not sufficient to guarantee privacy when datamining techniques are used. Privacy Preserving Data Mining (PPDM) algorithms have been recently introduced with the aim of modifying the database in such a way to prevent the discovery of sensible information. Due to the large amount of possible techniques that can be used to achieve this goal, it is necessary to provide some standard evaluation metrics to determine the best algorithms for a specific application or context. Currently, however, there is no common set of parameters that can be used for this purpose. This paper explores the problem of PPDM algorithm evaluation, starting from the key goal of preserving of data quality. To achieve such goal, we propose a formal definition of data quality specifically tailored for use in the context of PPDM algorithms, a set of evaluation parameters and an evaluation algorithm. The resulting evaluation core process is then presented as a part of a more general three step evaluation framework, taking also into account other aspects of the algorithm evaluation such as efficiency, scalability and level of privacy.
2005-12-12
Springer
JRC31003
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice