Title: Sensitivity Analysis of a Fire Spread Model in a Chaparral Landscape
Citation: Fire Ecology vol. 4 no. 1 p. 1-13
Publisher: Association of Fire Ecology
Publication Year: 2008
JRC N°: JRC35008
URI: http://fireecology.net/journal/Vol_4/No_1/4(1)_Clark.pdf
Type: Articles in periodicals and books
Abstract: ABSTRACT Due to a unique combination of environmental conditions, the chaparral shrublands of southern California are prone to large, intense wildland fires. There is ongoing work in the fire research community to establish whether fuel accumulation or weather conditions are the determining factor in the prevalence of large chaparral fires. This study introduces a framework for contributing a modeling perspective to understanding these alternative hypotheses. As models formalize our understanding of the physical process of fire spread, the sensitivity of the models to the meteorological and fuel inputs should be indicators of their relative importance. A global sensitivity analysis (GSA) was conducted on HFire, a spatially explicit raster model developed for modeling fire spread in chaparral fuels, based on the Rothermel spread equations. The GSA provided a quantitative measure of the importance of each of the model inputs on the predicted fire size. The results indicate that, under extreme weather conditions, wind speed was over three times more influential on predicted fire sizes than any other single model input. This finding supports the idea that fires burning under Santa Ana conditions are primarily driven by high wind speeds. Future research will involve extending the GSA methodology to quantify the relative importance of these inputs in terms of the long-term fire regime in chaparral ecosystems.
JRC Directorate:Space, Security and Migration

Files in This Item:
There are no files associated with this item.

Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.