An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Effect of Hydrogenation on Fracture Mode of a Reactor Pressure Vessel Steel

cover
The conditions for hydrogen-induced intergranular fracture in an artificially embrittled, low-alloyed reactor pressure vessel were investigated using fracture toughness and stress corrosion cracking tests. The specimens were taken from two locations: the heat affected zone beneath the cladding and the base material directly below the heat-affected zone. A hydrogenating system allowed the tests to be carried out on both pre-hydrogenated specimens or with continuous hydrogenation during testing itself. Overall the results demonstrate a detrimental effect of hydrogen on sub-critical crack growth resistance of both materials. At 120¿C (close to the upper shelf) it led to a lower energy ductile fracture mode and isolated instances of transgranular fracture. At ambient temperature (in the ductile to brittle transition regime) some mixed intergranular and transgranular sub-critical crack growth was observed.
2010-01-22
Karpenko Physico-Mechanical Institute
JRC56131
0430-6252,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice