An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

An automated SOM clustering based on data topology

cover
Self-organizing maps are powerful for cluster extraction dueto their ability of obtaining a topologically ordered and adaptive vector quantization of data. Thanks to lower-dimensional representation of high-dimensional data on SOM lattice, clustering is often done interactively from informative SOM visualizations. Yet large volumes of today¿s data sets necessitate to have automated methods that are as successful as interactive ones for fast and accurate knowledge discovery. An automated SOM clustering, based on hierarchical clustering of a topology representing graph, is proposed here. Applications on several data sets indicate that the proposed method can be successfully used for automated partitioning.
2010-07-06
d-side
JRC56716
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice