An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Information theoretical similarity measure for change detection

cover
In this paper, mixed information similarity measure and a multidimensional density estimation method based on multivariate Edgeworth series expansion are proposed and assessed for the task of multi-temporal change detection. To unify mutual information and variational information, mixed information is proposed to quantify the degree of dependence between two random variables, which are intuitively appropriate for multi-temporal change detection. In the literature, Edgeworth series expansion is widely used in statistics and various engineering fields for one-dimensional density estimation. To compute the mixed information measure, multidimensional density estimation based on multivariate Edgeworth series expansion is proposed and evaluated. Two experiments on real SAR images and optical images are carried out to evaluate the performance of change detection. Experimental results confirm the promising capability of mixed information and the multivariate density estimation based on Edgeworth series expansion.
2011-07-12
Institute of Electrical and Electronics Engineers Inc. (IEEE)
JRC60803
https://publications.jrc.ec.europa.eu/repository/handle/JRC60803,   
10.1109/JURSE.2011.5764721,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice