An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

The marginal likelihood of dynamic mixture models

cover
Analytical results for reducing the parameter space dimension when computing the marginal likelihood are given for the broad class of dynamic mixture models. These results allow the integration of scale parameters out of the likelihood by Kalman filtering and Gaussian quadrature. The method is simple and improves the accuracy of four marginal likelihood estimators, namely the Laplace method, the Chib estimator, reciprocal importance sampling, and bridge sampling. For some empirically relevant cases like the local level and the local linear models, the marginal likelihood can be obtained directly without any posterior sampling. Implementation details are given in some examples. Two empirical applications illustrate the gain in accuracy achieved.
2012-08-07
ELSEVIER SCIENCE BV
JRC69724
0167-9473,   
http://www.elsevier.com/locate/csda,    https://publications.jrc.ec.europa.eu/repository/handle/JRC69724,   
10.1016/j.csda.2012.03.007,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice