Neutron induced fission of 234U
The fission fragment properties of 234U(n,f) were investigated as a function of incident neutron energy from 0.2 MeV up to 5 MeV. The fission fragment mass, angular distribution and kinetic energy were measured with a double Frisch-grid ionization chamber using both analogue and digital data acquisition techniques. The reaction 234U(n,f) is relevant, since it involves the same compound nucleus as formed
after neutron evaporation from highly excited 236U*, the so-called second-chance fission of 235U. Experimental data on fission fragment properties like fission fragment mass and total kinetic energy (TKE) as a function of incident neutron energy are rather scarce for this reaction. For the theoretical modelling of the reaction cross sections for Uranium isotopes this information is a crucial input parameter. In addition, 234U is also an important isotope in the Thorium-based fuel cycle. The strong anisotropy of the angular distribution around the vibrational resonance at En = 0.77 MeV could be confirmed using the full angular range. Fluctuations in the fragment TKE have been observed in the threshold region around the strong vibrational resonance at En = 0.77 MeV. The present results are in contradiction with corresponding literature values. Changes in the mass yield around the vibrational resonance and at En = 5 MeV relative to En = 2 MeV
show a different signature. The drop in mean TKE around 2.5 to 3 MeV points to pair breaking as also observed in 235,238U(n,f). The measured two-dimensional mass yield and TKE distribution have been described in terms of fission modes. The yield of the
standard 1 (S1) mode shows fluctuations in the threshold of the fission cross section due to the influence of the resonance and levels off at about 20% yield for higher incident neutron energies. The S2 mode shows the respective opposite behaviour. The mean TKE
of both modes decreases with En. The decrease in mean TKE overrules the increase in S1 yield, so the mean TKE is dropping as a function of En above 2.5 MeV.
HAMBSCH Franz-Josef;
AL-ADILI A.;
OBERSTEDT Stephan;
POMP S.;
2013-02-27
EDP Sciences - Web of Conferences
JRC76166
2100-014X,
http://dx.doi.org/10.1051/epjconf/20122108001,
https://publications.jrc.ec.europa.eu/repository/handle/JRC76166,
10.1051/epjconf/20122108001,
Additional supporting files
File name | Description | File type | |