An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Cyclostationary Feature Analysis of CEN-DSRC for Cognitive Vehicular Networks

cover
Cognitive vehicular networks provide the necessary intelligence for vehicular communication networks in order to optimally utilize the limited resources and maximize the performance. One of the important functions of cognitive networks is to learn the radio environment by means of detecting and identifying existing radios. In this context we use the cyclostationarity features of dedicated short range communication (DSRC) signals to blindly detect them in the environment. We present experimental results on the cyclostationarity properties of DSRC wireless transmissions considering the CEN (European) standards for both uplink and downlink signals. By performing cyclostationarity analysis we compute the cyclic power spectrum (CPS) of the CEN DSRC signals which is then used for detecting the presence of the CEN DSRC radios. We obtain CEN DSRC signals from experiments and use the recorded data to perform post-signal analysis to determine the detection performance. The probability of false alarm and the probability of missed detection are computed and the results are presented for different detection strategies. Results show that the cyclostationarity feature based detection can be robust compared to the well known energy based technique for low signal to noise ratio levels.
2013-11-08
IEEE
JRC80762
978-1-4673-2754-1,   
1931-0587,   
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6629473,    https://publications.jrc.ec.europa.eu/repository/handle/JRC80762,   
10.1109/IVS.2013.6629473,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice