Title: Modelling soil erosion at European scale: towards harmonization and reproducibility
Authors: BOSCO ClaudioDE RIGO DANIELEDEWITTE OlivierPOESEN JeanPANAGOS Panagiotis
Citation: NATURAL HAZARDS AND EARTH SYSTEM SCIENCES vol. 15 no. 2 p. 225-245
Publisher: COPERNICUS GESELLSCHAFT MBH
Publication Year: 2015
JRC N°: JRC89756
ISSN: 1561-8633
URI: http://www.nat-hazards-earth-syst-sci.net/15/225/2015/nhess-15-225-2015.html
http://publications.jrc.ec.europa.eu/repository/handle/JRC89756
DOI: 10.5194/nhess-15-225-2015
Type: Articles in periodicals and books
Abstract: Soil erosion by water is one of the most widespread forms of soil degradation. The loss of soil as a result of erosion can lead to decline in organic matter and nutrient contents, breakdown of soil structure and reduction of the water-holding capacity. Measuring soil loss across the whole landscape is impractical and thus research is needed to improve methods of estimating soil erosion with computational modelling, upon which integrated assessment and mitigation strategies may be based. Despite the efforts, the prediction value of existing models is still limited, especially at regional and continental scale, because a systematic knowledge of local climatological and soil parameters is often unavailable. A new approach for modelling soil erosion at regional scale is here proposed. It is based on the joint use of low-data-demanding models and innovative techniques for better estimating model inputs. The proposed modelling architecture has at its basis the semantic array programming paradigm and a strong effort towards computational reproducibility. An extended version of the Revised Universal Soil Loss Equation (RUSLE) has been implemented merging different empirical rainfall-erosivity equations within a climatic ensemble model and adding a new factor for a better consideration of soil stoniness within the model. Pan-European soil erosion rates by water have been estimated through the use of publicly available data sets and locally reliable empirical relationships. The accuracy of the results is corroborated by a visual plausibility check (63% of a random sample of grid cells are accurate, 83% at least moderately accurate, bootstrap p 0.05). A comparison with country-level statistics of pre-existing European soil erosion maps is also provided.
JRC Directorate:Sustainable Resources

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.