Title: FP7 Project LONGLIFE: Overview of results and implications
Authors: ALTSTADT EberhardKEIM ElisabethHEIN H.SERRANO MartaBERGNER FrankVIEHRIG H. W.BALLESTEROS AVILA ANTONIOCHAOUADI R.WILFORD K.
Citation: NUCLEAR ENGINEERING AND DESIGN vol. 278 p. 753-757
Publisher: ELSEVIER SCIENCE SA
Publication Year: 2014
JRC N°: JRC90415
ISSN: 0029-5493
URI: http://www.sciencedirect.com/science/article/pii/S0029549314004944
http://publications.jrc.ec.europa.eu/repository/handle/JRC90415
DOI: 10.1016/j.nucengdes.2014.09.003
Type: Articles in periodicals and books
Abstract: LONGLIFE ("Treatment of long term irradiation embrittlement effects in RPV safety assessment") was a collaborative project of the 7th Framework Programme of EURATOM under the umbrella of NULIFE/NUGENIA, aiming at an improved understanding of irradiation effects in reactor pressure vessel steels under conditions representative of long term operation. The LONGLIFE project was completed by end of January 2014. The paper gives an overview of the main project results and their implications for future research, as discussed at the final project workshop. Indications of late blooming effects (LBE) were found in some cases, but clear criteria for the occurrence/exclusion in terms of irradiation conditions and chemical composition have still to be developed. The commonly accepted trend, that low flux and low irradiation temperature promotes LBE, is supported. A significant flux effect on the size of defect clusters was observed in two high Cu weld materials, while the changes of mechanical properties are not affected by the neutron flux. The database requires completion in particular for low-Cu RPV steels irradiated. The shift of reference temperature T0 over the thickness location of a VVER-440 welding seam does not follow the prediction Russian code, because of the strong variation of the intrinsic weld bead structure. Therefore, the effect of the initial microstructure and of the heterogeneity on the radiation behaviour has to be addressed in future works. Existing embrittlement trend curves models were applied to the LONGLIFE data base. None of the trend curves could predict the behaviour of the entirety of the LONGLIFE materials sufficiently. A guideline for monitoring radiation embrittlement during Life extension periods was developed.
JRC Directorate:Energy, Transport and Climate

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.