Title: Linking atomic and mesoscopic scales for the modelling of the transport properties of uranium dioxide under irradiation
Authors: BERTOLUS MarjorieFREYSS MichelDORADO BorisMARTIN GuillaumeHOANG KietMAILLARD SergeSKOREK RichardGARCIA PhilippeVALOT C.CHARTIER AlainVAN BRUTZEL LaurentFOSSATI PaulGrimes Robin W.PARFITT DavidBISHOP ClareMURPHY SamuelRUSHTON MichaelSTAICU DragosYAKUB E.NICHENKO SERGIIKRACK MatthiasDEVYNCK FabienNGAYAM-HAPPY RaoulGOVERS KevinDEO ChaitanyaBEHERA Rakesh K.
Citation: JOURNAL OF NUCLEAR MATERIALS vol. 462 p. 475-495
Publisher: ELSEVIER SCIENCE BV
Publication Year: 2015
JRC N°: JRC91249
ISSN: 0022-3115
URI: http://publications.jrc.ec.europa.eu/repository/handle/JRC91249
DOI: 10.1016/j.jnucmat.2015.02.026
Type: Articles in periodicals and books
Abstract: This article presents a synthesis of the investigations at the atomic scale of the transport properties of defects and fission gases in uranium dioxide, as well as of the transfer of results from the atomic scale to models at the mesoscopic scale, performed during the F-BRIDGE European project (2008–2012). We first present the mesoscale models used to investigate uranium oxide fuel under irradiation, and in particular the cluster dynamics and kinetic Monte Carlo methods employed to model the behaviour of defects and fission gases in UO2, as well as the parameters of these models. Second, we describe briefly the atomic scale methods employed, i.e. electronic structure calculations and empirical potential methods. Then, we show the results of the calculation of the data necessary for the mesoscale models using these atomic scale methods. Finally, we summarise the links built between the atomic and mesoscopic scale by listing the data calculated at the atomic scale which are to be used as input in mesoscale modelling. Despite specific difficulties in the description of fuel materials, the results obtained in F-BRIDGE show that atomic scale modelling methods are now mature enough to obtain precise data to feed higher scale models and help interpret experiments on nuclear fuels. These methods bring valuable insight, in particular the formation, binding and migration energies of point and extended defects, fission product localization, incorporation energies and migration pathways, elementary mechanisms of irradiation induced processes. These studies open the way for the investigation of other significant phenomena involved in fuel behaviour, in particular the thermochemical and thermomechanical properties and their evolution in-pile, complex microstructures, as well as of more complex fuels.
JRC Directorate:Nuclear Safety and Security

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.