An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Comparing apples with apples: Using spatially distributed time series of monitoring data for model evaluation

cover
A more sensible use of monitoring data for the evaluation and development of regional-scale atmospheric models is proposed. The motivation stems from observing current practices in this realm where the quality of monitoring data is seldom questioned and model-to-data deviation is uniquely attributed to model deficiency. Efforts are spent to quantify the uncertainty intrinsic to the measurement process, but aspects connected to model evaluation and development have recently emerged that remain obscure, such as the spatial representativeness and the homogeneity of signals subjects of our investigation. By using time series of hourly records of ozone for a whole year (2006) collected by the European AirBase network the area of representativeness is firstly analysed showing, for similar class of stations (urban, suburban, rural), large heterogeneity and high sensitivity to the density of the network and to the noise of the signal, suggesting the mere station classification to be not a suitable candidate to help select the pool of stations used in model evaluation. Therefore a novel, more robust technique is developed based on the spatial properties of the associativity of the spectral components of the ozone time series, in an attempt to determine the level of homogeneity. The spatial structure of the associativity among stations is informative of the spatial representativeness of that specific component and automatically tells about spatial anisotropy. Time series of ozone data from North American networks have also been analysed to support the methodology. We find that the low energy components (especially the intra-day signal) suffer from a too strong influence of country-level network set-up in Europe, and different networks in North America, showing spatial heterogeneity exactly at the administrative border that separates countries in Europe and at areas separating different networks in North America. For model evaluation purposes these elements should be treated as purely stochastic and discarded, while retaining the portion of the signal useful to the evaluation process. Trans-boundary discontinuity of the intra-day signal along with cross-network grouping has been found to be predominant. Skills of fifteen regional chemical-transport modelling systems have been assessed in light of this result, finding an improved accuracy of up to 5% when the intra-day signal is removed with respect to the case where all components are analysed.
2015-05-20
PERGAMON-ELSEVIER SCIENCE LTD
JRC95772
1352-2310,   
http://www.sciencedirect.com/science/article/pii/S1352231015300406,    https://publications.jrc.ec.europa.eu/repository/handle/JRC95772,   
10.1016/j.atmosenv.2015.04.037,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice