Title: Water corrosion of spent nuclear fuel: radiolysis driven dissolution at the UO2/water interface
Authors: SPRINGELL RossRENNIE SophieCOSTELLE LeilaDARNBROUGH JamesSTITT CamillaCOCKLIN ElizabethLUCAS ChrisBURROWS RobertSIMS, HowardWERMEILLE DRAWLE JonathanNICKLIN ChrisNUTTALL WilliamSCOTT ThomasLANDER G.h.
Citation: FARADAY DISCUSSIONS vol. 180 p. 301-311
Publisher: ROYAL SOC CHEMISTRY
Publication Year: 2015
JRC N°: JRC96784
ISSN: 1359-6640
URI: http://pubs.rsc.org/en/Content/ArticleLanding/2015/FD/C4FD00254G#!divAbstract
http://publications.jrc.ec.europa.eu/repository/handle/JRC96784
DOI: 10.1039/c4fd00254g
Type: Articles in periodicals and books
Abstract: X-ray diffraction has been used to probe the radiolytic corrosion of uranium dioxide.Single crystal thin films of UO2 were exposed to an intense X-ray beam at a synchrotron source in the presence of water, in order to simultaneously provide radiation fields required to split the water into highly oxidising radiolytic products, and to probe the crystal structure and composition of the UO2 layer, and the morphology of the UO2/water interface. By modeling the electron density, surface roughness and layer thickness, we have been able to reproduce the observed reflectivity and diffraction profiles and detect changes in oxide composition and rate of dissolution at the Ångström level, over a timescale of several minutes. A finite element calculation of the highly oxidising hydrogen peroxide product suggests that a more complex surface interaction than simple reaction with H2O2 is responsible for an enhancement in the corrosion rate directly at the interface of water and UO2, and this may impact on models of long-term storage of spent nuclear fuel.
JRC Directorate:Nuclear Safety and Security

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.