Title: Mössbauer spectroscopy, magnetization, magnetic susceptibility, and low temperature heat capacity of alpha-Na2NpO4
Authors: SMITH ANNAHEN AMIRMAGNANI NICOLASANCHEZ JEAN-PIERRECOLINEAU ERICGRIVEAU JEAN-CHRISTOPHERAISON PHILIPPECACIUFFO ROBERTOKONINGS RUDYCHEETHAM ANTHONY
Citation: JOURNAL OF PHYSICS-CONDENSED MATTER vol. 28 no. 8 p. 086002
Publisher: IOP PUBLISHING LTD
Publication Year: 2016
JRC N°: JRC97494
ISSN: 0953-8984
URI: http://iopscience.iop.org/article/10.1088/0953-8984/28/8/086002/meta
http://publications.jrc.ec.europa.eu/repository/handle/JRC97494
DOI: 10.1088/0953-8984/28/8/086002
Type: Articles in periodicals and books
Abstract: The physical and chemical properties at low temperatures of hexavalent disodium neptunate alpha-Na2NpO4 are investigated for the first time in this work using Mossbauer spectroscopy, magnetization, magnetic susceptibility, and heat capacity measurements. The Np(VI) valence state is confirmed by the isomer shift value of the Mössbauer spectra, and the local structural environment around the neptunium cation is related to the fitted quadrupole coupling constant and asymmetry parameters. Moreover, magnetic hyperfine splitting is reported below 12.5 K, which could indicate magnetic ordering at this temperature. This interpretation is further substantiated by the existence of a -peak at 12.5 K in the heat capacity curve, which is shifted to lower temperatures with the application of a magnetic field, suggesting antiferromagnetic ordering. However, the absence of any anomaly in the magnetization and magnetic susceptibility data shows that the observed transition is more intricate. In addition, the heat capacity measurements suggest the existence of a Schottky-type anomaly above 15 K associated with a low-lying electronic doublet found about 60 cm−1 above the ground state doublet. The possibility of a quadrupolar transition associated with a ground state pseudoquartet is thereafter discussed. The present results finally bring new insights into the complex magnetic and electronic peculiarities of alpha-Na2NpO4.
JRC Directorate:Nuclear Safety and Security

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.