Title: Systematic analytical characterization of new psychoactive substances: a case study
Citation: FORENSIC SCIENCE INTERNATIONAL vol. 265 p. 107-115
Publication Year: 2016
JRC N°: JRC97896
ISSN: 0379-0738
URI: http://www.sciencedirect.com/science/article/pii/S0379073816000438
DOI: 10.1016/j.forsciint.2016.01.024
Type: Articles in periodicals and books
Abstract: New psychoactive substances (NPS) are synthesized compounds that are not usually covered by European and/or international laws. With a slight alteration in the chemical structure of existing illegal substances registered in the European Union (EU), these NPS circumvent existing controls and are thus referred to as "legal highs". They are becoming increasingly available and can easily be purchased through both the internet and other means (smart shops). Thus, it is essential that the identification of NPS keeps up with this rapidly evolving market. In this case study, the Belgian Customs authorities apprehended a parcel, originating from China, containing two samples, declared as being "white pigments". For routine identification, the Belgian Customs Laboratory first analysed both samples by gas-chromatography mass-spectrometry and Fourier-Transform Infrared spectroscopy. The information obtained by these techniques is essential and can give an indication of the chemical structure of an unknown substance but not the complete identification of its structure. To bridge this gap, scientific and technical support is ensured by the Joint Research Centre (JRC) to the European Commission Directorate General for Taxation and Customs Unions (DG TAXUD) and the Customs Laboratory European Network (CLEN) through an Administrative Arrangement for fast recognition of NPS and identification of unknown chemicals. The samples were sent to the JRC for a complete characterization using advanced techniques and chemoinformatic tools. The aim of this study was also to to encourage the development of a science-based policy driven approach on NPS. These samples were fully characterized and identified as 5F-AMB and PX-3 using 1H and 13C nuclear magnetic resonance (NMR), high-resolution tandem mass-spectrometry (HR-MS/MS) and Raman spectroscopy. A chemoinformatic platform was used to manage, unify analytical data from multiple techniques and instruments, and combine it with chemical and structural information.
JRC Directorate:Institute for Health and Consumer Protection Historical Collection

Files in This Item:
There are no files associated with this item.

Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.