An official website of the European Union How do you know?      
European Commission logo
JRC Publications Repository Menu

Estimation of Non-Linear Continuous Time Models for the Heat Exchange Dynamics of Building Integrated Photovoltaic Modules

cover
This paper focuses on a method for linear or non-linear continuous time modelling of physical systems using discrete time data. This approach facilitates a more appropriate modelling of more realistic non-linear systems. Particularly concerning advanced building components, convective and irradiative heat interchanges are non-linear effects and represent significant contributions in a variety of components such as photo-voltaic integrated facades or roofs and those using effects as passive cooling strategies, etc. Since models are approximations of the physical system and data is encumbered with measurement errors it is also argued that it is important to consider stochastic models. More specifically this paper advocates for using continuous-discrete stochastic state space models in the form of nonlinear partially observed stochastic differential equations (SDE's) - with measurement noise for modelling dynamic systems in continuous time using discrete time data. First of all the proposed method provides a method for modelling non-linear systems with partially observed states. The approach allow parameters to be estimated from experimental data in a prediction error (PE) setting, which gives less biased and more reproducible results in the presence of significant process noise than the more commonly used output error (OE) setting. To facilitate the use of continuous-discrete stochastic state space models, a PE estimation scheme that features maximum likelihood (ML) and maximum a posteriori (MAP) estimation is presented along with a software implementation. As a case study the modelling of the thermal characteristics of a building integrated PV component is considered. The EC-JRC Ispra has made experimental data available. Both linear and non-linear models are identified. It is shown that a description of the nonlinear heat transfer is essential. The resulting model is a non-linear first order stochastic differential equation for the heat transfer of the PV component.
2008-09-15
ELSEVIER SCIENCE SA
JRC34847
0378-7788,   
http://dx.doi.org/10.1016/j.enbuild.2007.02.026,    https://publications.jrc.ec.europa.eu/repository/handle/JRC34847,   
10.1016/j.enbuild.2007.02.026,   
Language Citation
NameCountryCityType
Datasets
IDTitlePublic URL
Dataset collections
IDAcronymTitlePublic URL
Scripts / source codes
DescriptionPublic URL
Additional supporting files
File nameDescriptionFile type 
Show metadata record  Copy citation url to clipboard  Download BibTeX
Items published in the JRC Publications Repository are protected by copyright, with all rights reserved, unless otherwise indicated. Additional information: https://ec.europa.eu/info/legal-notice_en#copyright-notice