Title: Evaluation of the aerosol vertical distribution in global aerosol models through comparison against CALIOP measurements: AeroCom phase II results
Authors: KOFFI LEFEIVRE BRIGITTESCHULZ MichaelBREON Francois-MarieDENTENER FranciscusSTEENSEN Birthe MarieGRIESFELLER J.WINKER DavidBALKANSKI YvesBAUER SusanneBELLOUIN NicolasBERNTSEN TerjeBIAN HuishengCHIN MianDIEHL THOMASEASTER RichardGHAN StevenHAUGLUSTAINE D.IVERSEN TrondKIRKEVAG AlfLIU XiaohongLOHMANN UlrikeMYHRE GunnarRASCH PhilSELAND OyvindSKEIE R.b.STEENROD Stephen D.STIER PhilipTACKETT JasonTAKEMURA ToshihikoTSIGARIDIS K.VUOLO RYOON JiZHANG Kai
Citation: JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES vol. 121 no. 12 p. 7254–7283
Publisher: AMER GEOPHYSICAL UNION
Publication Year: 2016
JRC N°: JRC99445
ISSN: 2169-897X
URI: http://onlinelibrary.wiley.com/doi/10.1002/2015JD024639/full
http://publications.jrc.ec.europa.eu/repository/handle/JRC99445
DOI: 10.1002/2015JD024639
Type: Articles in periodicals and books
Abstract: The ability of 11 models in simulating the aerosol vertical distribution from regional to global scales, as part of the second phase of the AeroCom model intercomparison initiative (AeroCom II), is assessed and compared to results of the first phase. The evaluation is performed using a global monthly gridded data set of aerosol extinction profiles built for this purpose from the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) Layer Product 3.01. Results over 12 subcontinental regions show that five models improved, whereas three degraded in reproducing the interregional variability in Zα0–6 km, the mean extinction height diagnostic, as computed from the CALIOP aerosol profiles over the 0–6 km altitude range for each studied region and season. While the models' performance remains highly variable, the simulation of the timing of the Zα0–6 km peak season has also improved for all but two models from AeroCom Phase I to Phase II. The biases in Zα0–6 km are smaller in all regions except Central Atlantic, East Asia, and North and South Africa. Most of the models now underestimate Zα0–6 km over land, notably in the dust and biomass burning regions in Asia and Africa. At global scale, the AeroCom II models better reproduce the Zα0–6 km latitudinal variability over ocean than over land. Hypotheses for the performance and evolution of the individual models and for the intermodel diversity are discussed. We also provide an analysis of the CALIOP limitations and uncertainties contributing to the differences between the simulations and observations.
JRC Directorate:Energy, Transport and Climate

Files in This Item:
There are no files associated with this item.


Items in repository are protected by copyright, with all rights reserved, unless otherwise indicated.